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Abstract—Brain surface analysis is essential to neuroscience, however, the complex geometry of the brain cortex hinders computational

methods for this task. The difficulty arises from a discrepancy between 3D imaging data, which is represented inEuclidean space, and

the non-Euclidean geometry of the highly-convoluted brain surface. Recent advances inmachine learning have enabled the use of neural

networks for non-Euclidean spaces. These facilitate the learning of surface data, yet pooling strategies often remain constrained to a

single fixed-graph. This paper proposes a new learnable graph poolingmethod for processingmultiple surface-valued data to output

subject-based information. The proposedmethod innovates by learning an intrinsic aggregation of graph nodes based on graph spectral

embedding.We illustrate the advantages of our approach with in-depth experiments on two large-scale benchmark datasets. The

ablation study in the paper illustrates the impact of various factors affecting our learnable poolingmethod. The flexibility of the pooling

strategy is evaluated on four different prediction tasks, namely, subject-sex classification, regression of cortical region sizes,

classification of Alzheimer’s disease stages, and brain age regression. Our experiments demonstrate the superiority of our learnable

pooling approach compared to other pooling techniques for graph convolutional networks, with results improving the state-of-the-art in

brain surface analysis.

Index Terms—Learnable pooling, graph convolutional networks, brain surface analysis, alzheimer classification
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1 INTRODUCTION

BRAIN surface analysis plays a crucial role in understand-
ing the mechanisms of perception and cognition in

humans [1]. However, the complex geometry of the brain
surface, comprised of intricate folding patterns, poses con-
siderable challenges in neuroscience. Notably, brain imaging
data, for instance acquired by magnetic resonance imaging,
typically comes in 3D, a euclidean space, while its analysis
often focuses on the thin surface of the brain, a non-Euclidean
space. This fundamental difference between the domains of
acquisition and analysis, coupled with the geometrical com-
plexity of brain surfaces, severely hinders computational
approaches for brain surface analysis. As an illustration,
neighboring 3D voxels in a neuroimagemay in fact represent
points that are far apart on the brain surface, as shown on
Fig. 1. To alleviate this problem, popular surface-based
methods [2], [3] often simplify the geometry of the brain, for
instance, by mapping the surface to a sphere. This process is,
however, computationally expensive. For example, the
widely-used surface analysis pipeline of FreeSurfer [2]
requires several hours to inflate the cortical surface to a
sphere, match it to an atlas and finally perform a cortical

analysis. The geometry of brain surfaces similarly compli-
cates other conventional approaches for brain analysis, such
as those based on diffeomorphic transformations [4] or on
spherical harmonics [5].

A key application of brain surface analysis is detecting and
tracking the progress of neurodegenerative disorders, such as
Alzheimer’s disease, which often result in a severe atrophy of
brain tissues. Analyzing the geometrical changes of the brain
can thus aid in the early diagnosis of such conditions. Initial
work has focused on euclidean 3D data based for instance on
the texture of magnetic resonance images [6], [7], in order to
differentiate Alzheimer’s disease from normal aging. While
volumetric approaches have shown usefulness in detecting
global changes in a euclidean space [1], surface-based meth-
ods [2], [3], [4], [5] are more adequate for analyzing data on
brain surfaces. For example, the analysis of shape abnormali-
ties on brain surfaces has improved the prediction of
Alzheimer’s disease [8] or the identification of stages in this
progressive disorder [9]. Nevertheless, all these studies has
focused on pre-established measurements of brain surface
information. In this paper, we propose to learn and exploit the
organizational structure of surface data in order to improve
prediction tasks that use data on highly-complex surfaces.

1.1 Related Work

Current machine learning approaches have achieved state-of-
the-art performance in a broad range of computer vision and
medical imaging applications. In particular, deep learning
architectures such as convolutional neural networks (CNNs)
[10] offer higher accuracy and speed over traditional
approaches for image analysis. In neuroimaging, CNNs are
now widely used for various segmentation [11] and
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classification [12] problems, with architectures tailored for the
target task and the available imaging data. For example, vari-
ous architectures have been proposed to exploit volumetric
data [13], [14], [15], [16]. A fundamental limitation of these
models, however, is their restriction to data lying on a fixed
euclidean grid representing pixels or voxels. This restricted
representation induces ambiguity when exploiting complex
geometries such as in brain surfaces, impeding the application
of these euclideanmodels for brain surface analysis.

Geometric deep learning [17] generalizes deep learning
models to operate on non-Euclidean domains such as
graphs and manifolds. Recent advances in this field, partic-
ularly in graph convolutional networks (GCNs), have
enabled convolution operations over graphs by exploiting
spectral analysis, where convolutions translate into multi-
plications in a Fourier space [18], [19], [20], [21]. In such
models, convolutions are manipulated with eigenfunctions
of graph Laplacian operators [22], which can be approxi-
mated with Chebyshev [20] or Cayley polynomials [23].
These learned convolution filters can be expressed in terms
of mixtures of Gaussians [21] or splines [24]. Despite their
advantages over standard CNNs, these models are, how-
ever, limited to a fixed graph structure and thereby not suit-
able for brain imaging applications involving a population
of subjects. Indeed, brain surfaces have varying geometries
with a different number of nodes and a distinct connectivity
across meshes. This variability poses computational chal-
lenges, for example, arising from the fact that the values of a
Laplacian eigenfunction can drastically differ between
brains with distinct surface geometries [25]. To this effect, a
learned synchronization can correct for differences in eigen-
functions [26]. An alignment of eigenbases [27] similarly
provides a common parameterization of brain surfaces.
Such aligned eigenbases enabled the direct learning of sur-
face data across multiple brain geometries [28]. Neverthe-
less, these types of GCNs are limited to a fixed graph
structure, for instance, with the same number of nodes.

Standard pooling strategies rely in fact on such consis-
tency of graph structures. Currently, heuristics are often
used to mimic a max-pooling strategy in GCNs [18], [20],
[29]. They include varying the number of feature dimensions
across layers [18] while retaining fixed layer sizes, or relying
on partition methods, for instance, based binary trees [20] or
Graclus clustering [29] to coarsen the initial graph. However,
these strategies are mainly used for point-wise operations in
fixed-size graphs [21], such as node classification [30], and do
not apply to the task of subject classification when the

geometry varies across subjects. A few recent studies [31],
[32] have attempted to tackle the problem of graph classifica-
tion in GCNs by incorporating adaptive pooling modules in
the network. For instance, [31] performs a hierarchical clus-
tering of nodes using their spectral coordinates, with a subse-
quent pooling of node features within each cluster. While
this approach handles varying graph structures, clusters are
defined based only on node proximity in the embedding
space, without considering node features. Consequently, this
unsupervised pooling strategy may not be optimal for the
classification or regression task at hand. More recently, a dif-
ferential pooling technique [32] splits the network in two sep-
arate paths, one for computing latent features for each node
of the input graph and another for predicting the node clus-
ters by which features are aggregated. Similarly, [33] pro-
poses to use a top-k graph pooling layer in order to down-
sample the input graph. This method selects the top-k nodes
for the downsampled graph based on a learned projection
vector. However, these approaches ignore the intrinsic locali-
zation of nodes within the graph, which is sought when the
geometry is highly curved such as in brain surfaces.

1.2 Contributions

This paper proposes a novel method based on GCNs for
classification and regression of surface graphs. Our method
includes a learnable pooling strategy which predicts opti-
mal node clusters for each input graph, and thus can handle
graphs with varying number of nodes or connectivity. This
adaptive pooling technique is applied recursively to obtain
a fixed-size representation, which is then used for predict-
ing a target classification or regression value. Our method
also leverages spectral embedding techniques for surface
graphs [27], offering a more powerful representation of
complex surfaces like the brain cortex. This contrasts with
the differential pooling approach in [32] or [33], where
nodes lack intrinsic localization within the graph.

We illustrate our approach on the challenging tasks of
brain surface classification and regression using the well-
known Mindboggle [34] and ADNI datasets [35]. We first
consider the problem of subject-sex1 classification and eval-
uate the impact of our learnable pooling method’s hyper-
parameters, including the type of pseudo-coordinates, num-
ber of clusters, number of eigenvectors, number of neigh-
bors, graph convolution kernel, and input graph size. In an
ablation study, we also assess the importance of alignment
and regularization for this prediction task. To evaluate the
usefulness of our learnable pooling strategy, we compare it
against recently-proposed pooling techniques for GCNs.

We show the ability of our pooling strategy to learn
important node clusters in a supervised manner by compar-
ing the relationship between these clusters and prominent
anatomical regions. To further validate the regions learned
by our network, we use it to predict the size of cortical
regions as defined by a standard parcellation atlas. Our
model is also tested on cortical surface data from the ADNI
dataset to (i) discriminate between control subjects and sub-
jects suffering from different stages of Alzheimer’s, and (ii)

Fig. 1. Complex geometry of the cerebral cortex. As illustrated, two
nearby points in the volume may in fact be far apart on the cortical
surface.

1. As in most studies, we use the term sex instead of gender to desig-
nate biological differences between male and female subjects.
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regress the brain age of subjects. We choose the ADNI data-
set [35] as it provides manual labels of the subject age and
three stages of Alzheimer’s disease. Our method achieves a
similar performance to the state-of-the-art on the ADNI
dataset [35], while using only simple cortical measurements
such as thickness and sulcal depth.

In summary, the major contributions of our work are as
follows:

– A general model for classifying and regressing graphs
with varying geometry, which combines a learnable,
supervised pooling strategy with the intrinsic (non-
Euclidean) localization of nodes via graph spectral
embedding.

– A first fully-learned model for brain surface analysis
contrasting with previous approaches based on pre-
defined cortical features;

– An in-depth experimental evaluation on two large-
scale benchmark datasets (i.e., Mindboggle and
ADNI) and four different prediction tasks (i.e., sub-
ject-sex classification, cortical region size regression,
Alzheimer’s disease classification, and brain age
regression). Our extensive experiments evaluate the
impact of the main components and hyper-parame-
ters of our learnable pooling method, and compares
our method against four recently-proposed pooling
strategies for GCN;

– State-of-the-art performance for ADNI stages classi-
fication and brain age prediction using cortical sur-
face data.

This paper represents a significant extension of our previ-
ous work in [36]. Beyond giving a deeper motivation of our
work and amore detailed description of the methodology, we
thoroughly evaluate our method on a large multi-site dataset,
i.e., Mindboggle, aswell as on two additional prediction tasks,
i.e., subject-sex classification and cortical region-size regres-
sion. Added experiments also provide a more comprehensive
study of the main hyper-parameters and components of our
pooling method and demonstrate its advantage over state-of-
art graphpooling techniques relying on unsupervised spectral
clustering [31], differentiable pooling approaches in euclidean
space [32] and a recent top-k pooling method [33]. Moreover,
results of new experiments highlight the relationship between
the learned clusters for these tasks and known cortical regions,
and show the robustness of our method to surface mesh vari-
ability in terms of number of nodes and connectivity.

2 METHOD

We first describe a general formulation that extends standard
convolutions to non-rigid geometries, such as surfaces. We
then detail our strategy based on graph spectral embedding
to model the intrinsic localization of mesh nodes and align
them across multiple surfaces. Subsequently, we present our
end-to-end learnable pooling strategy for the adaptive cluster-
ing of graph nodes. Finally, we provide detailed information
on the overall network architecture and training procedure.

2.1 Convolutions on Non-Rigid Geometries

In a standard CNN, the input is typically provided as a set
of features observed over a regular grid of points like 2D

pixels or 3D voxels. This information is then processed
using a sequence of layers composed of a convolution oper-
ation followed by a non-linear activation function like the
ReLU. Let YðlÞ 2 RNl�Ml be the input feature map at convo-
lution layer l, such that y

ðlÞ
iq is the qth feature of the ith input

node. The feature map consists of Nl input nodes with Ml

dimensions each. Assuming a 1D grid for simplicity, the
output of layer l obtained by a convolution kernel of size Kl

is given by y
ðlþ1Þ
ip ¼ fðzðlÞip Þ, where

z
ðlÞ
ip ¼

XMl

q¼1

XKl

k¼1

w
ðlÞ
pqk � yðlÞiþk; q þ bðlÞp : (1)

Here, w
ðlÞ
pqk are the convolution kernel weights, bðlÞp the

weights of the layer, and f the activation function.
For a general surface, points are not necessarily defined

on a regular grid and can lie anywhere in a 3D euclidean
space. Such surface can conveniently be represented as a
mesh graph G ¼ fV; Eg where V is the set of nodes corre-
sponding to points and E is the set of edges between the
graph nodes. Given a node i 2 V, we denote as N i ¼
fj j ði; jÞ 2 Eg the set of nodes connected to i, called neigh-
bors. We extend the concept of convolution to arbitrary
graphs using the more general definition of geometric con-
volution [21], [24], [28]:

z
ðlÞ
ip ¼

X
j2N i

XMl

q¼1

XKl

k¼1

w
ðlÞ
pqk � yðlÞjq � ’ijðuuðlÞk Þ þ bðlÞp ; (2)

In this extended formulation, ’ij is a symmetric kernel
parameterized by uuk, which encodes the relative position of
neighbor nodes j to a node i when computing the convolu-
tion at node i. The pseudo-coordinates uij of i relative to j
are usually defined based on Cartesian or polar coordinates.
In this work, we explore two types of kernels for geometric
convolutions: the Gaussian kernel [21] and B-spline kernel
[24]. The Gaussian kernel, which has learnable parameters
uuk ¼ fmmk;Skg corresponding to a mean vector and covari-
ance matrix, computes the response as

’ijðuukÞ ¼ exp

 
� 1

2
ðuij � mmkÞ>S�1

k ðuij � mmkÞ
!
: (3)

As shown in Fig. 3, standard convolutions (left) can be seen
as a special case of geometric convolutions with Gaussian
kernels (right) where nodes are placed on a regular grid
and kernels are unit impulses (i.e., spherical Gaussian ker-
nels with zero variance) placed at the grid position of neigh-
bor nodes. On the other hand, B-spline kernels obtain the
response as the product of Ml B-spline basis functions of
degree m based on uniform knot vectors. Compared to
Gaussian kernels, this kernel has the advantage of making
computation time independent from the kernel size, thereby
improving computational efficiency and scalability.

2.2 Spectral Embedding of Multiple Surface Graphs

A significant limitation of the above geometric convolutional
model is its inability to process differently-aligned surfaces.
Thus, since local coordinates uij are determined using a fixed
coordinate system, any rotation or scaling of the surface mesh
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will produce a different response for a given set of kernels.
Moreover, as shown in Fig. 1, geometric convolutions in
euclidean space are poorly-suited for complex surfaces like
the highly-convoluted brain cortex.

We address these issues using a graph spectral embedding
approach. Specifically, we map a surface graph G to a low-
dimensional subspace using the eigencomponents of its nor-
malized Laplacian L ¼ I�D�1

2AD�1
2, where A is the

weighted adjacency matrix and D is the diagonal degree
matrix with dii ¼

P
j aij. Although binary adjacency values

could be used inA, we instead define theweight between two
adjacent nodes as the inverse of their euclidean distance: aij ¼�kxi � xjk2 þ �

��1
where � is a small constant to avoid a zero-

division. Denoting as ULU> the eigendecomposition of L,
whereL is the diagonalmatrix of real, non-negative eigenval-
ues, we then compute the normalized spectral coordinates of
nodes as the rows of matrix bU ¼ UL�1

2. Here, normalized
components are scaled proportionally to the inverse of their
eigenvalues since components with smaller eigenvalues
encode more relevant characteristics of the embedded graph
[37]. Based on the same principle and as in [38], we limit the
decomposition to the d ¼ 3 first smallest non-zero eigenval-
ues of L. This allows capturing the important variability of
surfaces, while also limiting computational complexity.

We must align the spectral projection of different surface
graphs to a common reference bUref

because the spectral

embedding of L is only defined up to an orthogonal trans-
formation (i.e., rotation or flip). The spectral embedding of a
random brain surface in the dataset is chosen as the com-

mon reference bUref
. To perform alignment, we find a node

correspondence by using an iterative closest point (ICP)
approach [27], where each node i 2 V is mapped to its near-
est reference node pðiÞ 2 Vref in the embedding space.
Denoting as bui the normalized spectral coordinates of node
i, the alignment task can be expressed as

argmin
p;R

XN
i¼1

��bui R � buref
pðiÞ
��2
2
: (4)

Let bUref

p be the matrix whose ith row is buref
pðiÞ. The transforma-

tion between corresponding nodes is approximated as

R ¼ �bU> bU��1bU> bUref

p ¼ L
1
2U> bUref

p : (5)

We use the aligned spectral embedding eU ¼ bUR to define
the local coordinates corresponding to an edge ði; jÞ 2 E:
uij ¼ euj � eui. As illustrated in Fig. 3 (right), and based on
Eq. (2), the convolution at node i therefore considers kernel
responses ’ijðuuðlÞk Þ for neighbor nodes j, relative to the spec-
tral coordinates of i.

Fig. 3. Illustration of standard grid-based 2D convolutions (left) and geometric graph convolution (right). The challenge is to exploit kernels on arbi-
trary graph structures, and to add pooling operations over convolutional layers of graph nodes.

Fig. 2. An overview of the proposed graph convolution network:The brain surface graph are mapped to a low-dimensional subspace using spectral
decomposition. The spectral bases of the input brain are then aligned to a common reference. Aligned spectral coordinates and cortical surface fea-
tures are fed as input to the network, composed of sequential Graph Convolution + Pooling (GC+P) blocks and two fully-connected (FC) layers.
Each GC+P block processes input node features YðlÞ in two separate paths based on geometric convolutions, one (bottom) deriving a new set of fea-
tures for each graph node FðlÞ and the other (top) computing a soft assignment SðlÞ of nodes to clusters representing nodes of the reduced output
graph. A pooling layer then obtains reduced graph features Yðlþ1Þ by aggregating FðlÞ in each predicted cluster of SðlÞ.

GOPINATH ET AL.: LEARNABLE POOLING IN GRAPH CONVOLUTIONAL NETWORKS FOR BRAIN SURFACE ANALYSIS 867

Authorized licensed use limited to: University of Southern California. Downloaded on March 04,2022 at 21:47:00 UTC from IEEE Xplore.  Restrictions apply. 



2.3 Learnable Pooling for Graph
Convolutional Networks

Pooling in standard CNNs is typically carried out by aggre-
gating values inside non-overlapping regions of features
maps. In graph convolutional networks [18], [19], [20], [21],
however, this approach is not applicable for the following
reasons. First, nodes are not laid out on a regular grid,
which prevents aggregation of features in predefined
regions. Second, the density of points may spatially vary in
the embedding space; hence regions of fixed size or shape
are not suitable for graphs with different geometries. Last,
and more importantly, input surface graphs may have a dif-
ferent number of nodes, while the output may have a fixed
size. This is the case when predicting a fixed number of
class probabilities from different brain geometries.

We propose an end-to-end learnable pooling strategy for
the subject-specific aggregation of cortical features, inspired
by the differential pooling technique of Ying et al. [32]. Our
strategy, shown in Fig. 2, produces a sequence of convolu-
tional feature maps fYð1Þ; . . . ;YðlÞ; . . . ;YðLÞg, with YðlÞ 2
RNl�Ml , by the repeated application of a Graph Convolution
+ Pooling (GC+P) block. Each GC+P block takes as input a
feature map YðlÞ on a Nl node graph, and processes it in two
separate paths: the first one computing latent features for
each node of the input graph and the second predicting the
node clusters by which the features are aggregated. The fea-
ture encoding path applies a sequence of geometric convo-
lutions as in Eq. (2) to generate a new feature map
FðlÞ 2 RNl�Mlþ1 on the block’s input graph. The clustering
path also consists of sequential geometric convolutions,
however the activation function of the last convolution is
replaced by a node-wise softmax. The output of this last
convolution, SðlÞ 2 ½0; 1�Nl�Nlþ1 , gives for each node i the
probability sic that i belongs to cluster c 2 f1; . . . ; Nlþ1g.

Pooled features Yðlþ1Þ 2 RNlþ1�Ml are computed as the
expected sum of convolutional features in each cluster c, i.e.,

yðlþ1Þ
cp ¼

XNl

i¼1

s
ðlÞ
ic � f ðlÞ

ip

Yðlþ1Þ ¼ SðlÞ>FðlÞ:

(6)

The processing of aggregated node features, downstream
the pooling operation, requires computing a new adjacency
matrix Aðlþ1Þ and spectral coordinates eUðlþ1Þ for the node
clusters which become the nodes of the block’s reduced-size
output graph. Here, we define the adjacency weights
between pooling clusters c and d as

a
ðlþ1Þ
cd ¼

XNl

i¼1

XNl

j¼1

s
ðlÞ
ic � sðlÞjd � aðlÞij

Aðlþ1Þ ¼ SðlÞ>AðlÞSðlÞ:

(7)

Intuitively, a
ðlþ1Þ
cd is the expected number of connected nodes

between clusters c and d. Likewise, the spectral coordinates
of cluster c is computed as the mean coordinates (i.e., cen-
troid) of all nodes assigned to c:

euðlþ1Þ
cp ¼

XNl

i¼1

s
ðlÞ
ic � euðlÞ

ip

eUðlþ1Þ ¼ SðlÞ> eUðlÞ:

(8)

The bilinear formulation of Eq. (6) faces a challenging opti-
mization problem with several local minima. For instance,
the same output Yðlþ1Þ in Eq (6) can be obtained by modify-
ing either SðlÞ or FðlÞ. To alleviate this problem and obtain
spatially-smooth clusters, we add a Laplacian regularization
term to the loss function:

LregðSðlÞÞ ¼
XNl

i¼1

XNl

j¼1

a
ðlÞ
ij �
��sðlÞi � s

ðlÞ
j

��2
2

¼ tr
�
SðlÞLðlÞSðlÞ>�;

(9)

where s
ðlÞ
i denotes the cluster probability vector of node i

(i.e., the ith row of SðlÞ). This well-known regularization
approach [39] penalizes connected nodes to be mapped to
different clusters, with a penalty proportional to the connec-
tion strength.

2.4 Architecture Details

Fig. 2 presents the overall architecture of our graph convo-
lutional networks. As input, we give to the network the cor-
tical surface features xi and aligned spectral coordinates eui

of each node i. For computing graph convolutions as in
Eq. (2), we define the neighbors N i of node i as the k = 5
nodes nearest to i in the spectral embedding (i.e., the dis-
tance between node i and j corresponds to keui � eujk2) plus
node i itself. While various features could be considered to
model the local geometry of the cortical surface [2], we con-
sidered sulcal depth and cortical thickness in this work,
since the first one helps delineate anatomical brain regions
[40] and the latter is related to ageing [41] and neurodegen-
erative diseases such as Alzheimer’s [42].

The network comprises two cascaded GC+P blocks, fol-
lowed by two fully-connected (FC) layers. The first block
generates an N�8 feature map and an N�16 cluster assign-
ment matrix, in two separate paths, and combines them
using the pooling formulation of Eq. (6) to obtain a pooled
feature map of 16�8. In the second block, pooled features
are used to produce a 16�16 map of features, pooled in a
single cluster. Hence, the second pooling step acts as an
attention module selecting the features of most relevant
clusters. The resulting 1�16 representation is converted to a
1�8 vector using the first FC layer, and then to a 1�
NumOutputs vector with the second FC layer, where the
number of outputs NumOutputs depends on the prediction
task.

Except for the cluster probabilities and network output,
all layers employ the Leaky ReLU [43] as activation func-
tion: y

ðlÞ
ip ¼ maxð0:01zðlÞip ; zðlÞip Þ. In the default setting of our

pooling method, for the graph convolution kernel ’ij of
Eq. (2), we used the B-spline kernel proposed by Fey et al.
[24]. However, we also test the Gaussian kernel [21] in our
experiments.

For training, the loss function combines the output pre-
diction loss and cluster regularization loss on the first GC+P
block:

LðuuÞ ¼ LoutðuuÞ þ aLreg

�
Sð1Þ�; (10)

where a is a parameter controlling the amount of regulariza-
tion. For classification tasks (i.e., disease prediction), Lout is
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set as the cross-entropy between one-hot encoded ground-
truth labels and output class probabilities. In the case of
regression (i.e., brain age prediction), we use mean squared
error (MSE) for this loss. Network parameters are optimized
with stochastic gradient descent (SGD) using the Adam
optimizer. Experiments were carried out on an i7 desktop
computer with 16GB of RAM and an Nvidia Titan X GPU.
The model takes less than a second for disease classification
or age regression.

3 EXPERIMENTS AND RESULTS

We validate our method on two large-scale, publicly-avail-
able datasets: Mindboggle-101 [34] and ADNI1 [35]. The
first one contains T1-weighted MRI from 101 healthy sub-
jects (males: n = 57, females: n = 44, age: 20–61 years) col-
lected from 9 different sites. We use this dataset for the
tasks of subject-sex classification and cortical region size
regression since both subject-sex labels and manual annota-
tions for 32 cortical parcels are provided with imaging data.
The ADNI1 dataset [35] is comprised of multi-sequence
MRI data from 400 subjects diagnosed with mild cognitive
impairment (MCI), 200 subjects with early Alzheimer’s dis-
ease (AD) and 200 elderly control subjects (NC), obtained
from 55 participating sites. Both datasets contain brain sur-
face meshes with pointwise cortical thickness and sulcal
depth measurements, generated by FreeSurfer.2 Cortical
meshes in these datasets vary from 102K to 185K nodes. The
code for our work is available at the following URL:
https://github.com/kharitz/learnpool.git.

In the first series of experiments, we evaluate the effects
of hyper-parameters influencing the performance of our
pooling method. Next, an ablation study is presented to
assess the effect of our spectral alignment and our Laplacian
regularization. Different pooling strategies for our graph
convolutional networks are thereafter compared on the sub-
ject-sex classification problem, while also evaluating the
impact of input graph size on prediction accuracy. We then
illustrate our network’s ability to learn meaningful node
clusters by predicting the size of cortical parcels from an
anatomical atlas. Finally, we highlight the advantages of
working in the spectral domain on the problems of disease
classification (NC versus AD, MCI versus AD, and NC ver-
sus MCI) and brain age regression.

3.1 Impact of Hyper-Parameters

Our learnable pooling method requires the selection of sev-
eral hyper-parameters: the type of pseudo-coordinates, the
number of clusters, the number of eigenvectors, the number
of neighbors, and the type of graph convolution. In the next
series of experiments, we assess the impact of each of these
hyper-parameters on the task of subject-sex classification
with the MindBoggle dataset, using a 70-10-20 split for
training, validation, and testing. To have a measure of vari-
ance, keeping the same split, we generated 5 different sub-
sets by randomly sub-sampling 50K nodes in each training,
validation and testing graph, and used the sub-sampled
graphs as input to our model. Performance (mean and stan-
dard deviation) is measured across 5 runs, each one carried

out on a different subset. The same architecture, shown in
Fig. 2, is used across the following experiments.

3.1.1 Pseudo-Coordinates

We first evaluate the benefit of using spectral information
when computing the pseudo-coordinates of nodes in the
graph convolution kernel, by comparing it against conven-
tional Cartesian and polar coordinates. The same architec-
ture of Fig. 2, based on B-spline kernels, is used for all three
settings. As reported in Table 1 accuracy improvements of
3.81 and 1.06 percent are obtained over Cartesian and polar
coordinates, respectively, showing the ability of spectral
pseudo-coordinates to better capture the local geometry of a
complex surface. Note that, to have a fair comparison, spec-
tral node coordinates were used as input to the network in
all three settings, hence the models using Cartesian and
polar pseudo-coordinate also leverage spectral information.
Comparing Cartesian and polar pseudo-coordinates
together, we find that polar ones provide a higher accuracy.
While both encode similar information, polar coordinates
offer a more direct description of distance and direction
between two points, which could help to learn their relation.
This may explain why polar pseudo-coordinates were pre-
ferred in earlier work [21].

3.1.2 Number of Clusters

Next, we train our GCN network using different numbers of
clusters for the pooling operation of the network’s first GC
+P block. As presented in Table 1, four settings are tested: 4,
8, 16 and 32 clusters. We see a regular increase in accuracy
from 73.64 to 84.21 percent when going from 4 to 16 clusters.
This reflects the fact that sex-related differences are present

TABLE 1
Impact of Our Hyper-Parameters on Our

Learnable Pooling Method

Experiments Parameters Mean � Std.

Pseudo-coordinates
Cartesian 80.40 � 4.21
Polar 83.15 � 2.10
Ours - Spectral 84.21 � 3.72

Number of clusters
4 73.68 � 5.76
8 76.84 � 7.87
16 84.21 � 3.72
32 77.89 � 2.10

Number of eigenvectors

Only cortical features 70.52 � 5.36
1 75.78 � 7.13
3 84.21 � 3.72
5 77.89 � 2.10
10 74.73 � 8.40

Number of neighbors

2 81.05 � 2.57
3 82.10 � 2.57
5 84.21 � 3.72
10 84.21 � 3.93

Graph convolution kernel
Gaussian [21] 83.15 � 2.15
B-Spline [24] 84.21 � 3.72

Ablation study
W/o Alignment 69.47 � 8.42
W/o Regularization 74.73 � 5.15

Mean and standard deviation were computed on 5 separate runs using a differ-
ent random 50K node sub-sampling of each graph. For every hyper-parameter,
the default setting of our method is highlighted in bold font.

2. https://surfer.nmr.mgh.harvard.edu/
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in various cortical regions, which can be learned by the net-
work. However, the accuracy drops significantly when fur-
ther increasing the number of clusters to 32. This could be
due to the creation of near-empty clusters that add no useful
information to the training while increasing the number of
parameters to learn.

3.1.3 Number of Eigenvectors

The inputs of our GCN are the aligned spectral components
(the Laplacianmatrix eigenvectors) and two cortical features,
i.e., sulcal depth and cortical thickness, corresponding to
eachmesh node. In the next experiment, we vary the number
of spectral components given as input, testing five different
settings: 0 (only cortical features), 1, 3, 5, and 10. For all set-
tings, three eigenvectors are used to compute pseudo-coordi-
nates in the graph convolutions, and the same 70-10-20 split
as the previous experiments is employed. Results presented
in Table 1 demonstrate the importance of including spectral
information as input, with an accuracy improvement of
5.26 percent when adding the first component (i.e., eigenvec-
tor with smallest non-zero eigenvalue) to cortical features.
The best performance of 84.21 percent is achieved when con-
sidering the first three eigenvectors in addition to cortical
features. A possible explanation for this result is that three is
the minimal number of eigenvectors required to uniquely
locate a point on a 3D surface [27]. As suggested by the
decreasing accuracy for 5 and 10 spectral components,
higher-order eigenvectors may capture highly-varying and
subject-specific patterns of sulcal and gyral geometry, which
is not predictive of subject sex.

3.1.4 Number of Neighbors

The number of neighbors k directly impacts the computa-
tion of convolutions in Eq. (2). To better assess the effect of
this hyper-parameter, the performance of a classification
task is evaluated while increasing the number of neighbors
within randomly sub-sampled graphs of 50K nodes. More
precisely, for every node i in the graph, the k nearest neigh-
bors are defined in the spectral embedding space. The
smoothness of the Laplacian matrix eigenvectors ensures
that neighbors are locally close to each other on the brain
surface. Performance is then evaluated using a classification
model that is trained on sub-sampled graphs with k = 2, 3,
5, and 10 neighbors.

Table 1 shows a higher classification accuracy when the
number of neighbors increases. From a classification accu-
racy of 81.05 percent for k = 2 neighbors, the performance
improves gradually to 84.21 percent with k = 5 and k = 10
neighbors. However, the computational overhead of
employing larger neighborhoods must also be taken into
account. For instance, runtime increases by a factor of 1.7,
from 93.6 ms to 158.5 ms, when going from k = 5 to k = 10.
For this reason, a neighborhood size of k = 5 is used in the
default setting of our method.

3.1.5 Graph Convolution Kernel

Last, we compare the B-spline convolution of our default
architecture with the Gaussian kernel of [21] with diagonal
covariance matrix. As reported in Table 1, we observe a

small improvement of 1.06 percent when employing B-
spline kernels. Interestingly, the number of parameters is
almost the same for both kernel types (2,257 for Gaussian
compared to 2,233 for B-spline) and, thus, performance dif-
ferences are not due to overfitting. Note that similar
improvements of B-spline kernels compared to Gaussian
kernels were also observed in [24] for various analysis tasks.

3.2 Ablation Study on Alignment and Regularization

In this section, we perform an ablation study to evaluate the
contribution of spectral alignment and Laplacian regulariza-
tion on our method’s performance for the task of predicting
the sex of Mindboggle subjects. To assess the usefulness of
spectral alignment, we first train a model with unaligned
spectral coordinates and with cortical features. The results
in Table 1 show the unaligned components to yield a low
accuracy of 69.47 percent, demonstrating the importance of
this alignment for learning across different surfaces. Results
also highlight the role of Laplacian regularization in learn-
ing, with a 9.48 percent drop in accuracy when removing
the corresponding term in the loss of Eq. (10), i.e., using a ¼
0 in the loss. As explained before, this regularization term is
necessary to avoid getting stuck in a local minimum caused
by the bi-linear formulation of the pooling operation. Lapla-
cian regularization also provides spatially-smoother clus-
ters that better reflect the underlying anatomy of the brain.

3.3 Comparison of Different Pooling Methods

We compared our learnable pooling strategy against four
other pooling techniques applicable to graph convolutional
networks: 1) taking the global average of feature maps,
2) pooling feature maps in fixed regions computed from a
cortical parcel atlas, 3) pooling the same features in regions
obtained by applying k-means clustering on the spectral
embedding, 4) the top-k pooling approach proposed in [33]
for downsampling. For all tested methods, we used a net-
work composed of two graph convolution layers followed
by two fully-connected layers, as described in Section 2.4. In
the case of global average pooling and fixed parcellation
pooling, a single pooling operation is applied after the sec-
ond graph convolution. For spectral clustering pooling,
nodes are grouped after each of the two convolution layers
as in our learnable pooling. However, the pooling path of
the network is replaced by a static node clustering. Like-
wise, for top-k pooling, we employ the same architecture as
presented in Section 2.4, but replace our pooling path with
the top-k pooling after the graph convolution operation. We
train and test all methods on subject-sex classification using
the MindBoggle dataset with a 70-10-20 split for training,
validation, and testing. Once again, we perform 5 separate
runs with a different random sub-sampling of 50K nodes
for each graph.

Table 2 summarizes the results of this experiment. We
see that global average pooling yields the poorest perfor-
mance with a mean accuracy of 60.76 percent. Using atlas-
defined cortical parcels to aggregate features improves
accuracy slightly to 64.59 percent, suggesting that these par-
cels are informative for identifying subject sex. Moreover,
applying unsupervised clustering on the spectral embed-
ding further increases mean accuracy to 67.94 percent,
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which indicates the benefits of having a hierarchy of non-
fixed clusters. The advantage of a learnable top-k pooling
over fixed pooling methods can be seen with a classification
accuracy of 78.92 percent. However, by learning clusters
in a supervised manner from spectral embeddings, our
method achieves the highest accuracy of 81.33 percent, an
improvement of 13.39 percent over spectral clustering and a
5.3 percent gain over top-k pooling.

Fig. 4 gives examples of clusters for the different pooling
strategies (except global average pooling, which considers
all nodes as part of a single cluster and top-k pooling as it
selects nodes to drop for downsampling). While spectral
clustering yields spatially-regular clusters, the distribution
of these clusters is arbitrary and does not seem to match
known parcels of the cortex (shown in Fig. 4b). In contrast,
the clusters predicted by our pooling strategy are larger and
better aligned with these known parcels.

3.4 Impact of Input Graph Size

In the next experiment, we investigate whether our method
is robust to variability in the size of the surface mesh.
Toward this goal, we use the same split of the MindBoggle
dataset as in the first experiment, and randomly sub-sample
the original mesh to 100, 1K, 5K, 10K, 25K, 50K and 75K
nodes. Because convolutions at each node use information
from its k = 5 nearest neighbors, as described in Eq. (2), test-
ing multiple sub-sampling with the same number of nodes
also assesses the robustness of our model to variations in
graph connectivity. We train our model on each of these
reduced graph datasets to predict the sex of MindBoggle
subjects.

Table 3 D gives the classification accuracy for different
sizes of training graphs when testing on sub-sampled
graphs of the same size, or on the original full-sized graph.
The first case evaluates whether the same accuracy can be
achieved with less information at the input of the network,

whereas the second case tests if the convolution parameters
learned by the network generalize to larger graphs. As
expected, classification performance decreases when reduc-
ing the size of input graphs, both when testing on sub-
sampled graphs and full-sized graphs. When testing on
sub-sampled graphs, accuracy drops from 94.73 percent
while training with full graphs to 55.02 percent for graphs
with only 100 nodes. However, high accuracy values of 84.21
percent and 85.26 percent can be achieved when training
graphs of 50K and 75K nodes, respectively, about half the size
of the original graphs. Furthermore, we see that our model
trained with moderately-reduced graphs can still perform
well on full-sized ones. For instance, the model trained with
graphs of 50K nodes and 75K nodes achieves an accuracy of
78.94 and 84.21 percent respectively, when tested on original
graphswith twice the number of nodes.

3.5 Task-Specific Pooling Regions

In this section, we qualitatively and quantitatively evaluate
the predicted clusters and feature maps learned by our net-
work. Once more, we consider the task of classifying males
versus females subjects from the Mindboggle dataset with
the architecture depicted in Fig. 2.

Fig. 5 shows examples of features and clusters learned by
our graph pooling model for a male and a female subject.
The first and third columns give the distribution of four dif-
ferent activation maps learned by the network for the two
subjects. The mean activation in each predicted cluster for
the same subjects is illustrated in the second and fourth col-
umns of the figure. We observe the diversity of depicted
clusters, spawning different regions of the brain both on the

TABLE 2
Baseline Methods Comparison

Pooling method Mean � Std.

Global Average Pooling 60.76 � 3.62
Fixed Parcellation Pooling 64.59 � 7.84
Spectral Clustering Pooling [31] 67.94 � 4.97
Top-k pooling [33] 78.94 � 3.32

Learnable Pooling (ours) 84.21 � 3.72

Mean and standard deviation were computed on 5 separate runs using a differ-
ent random 50K node sub-sampling of each graph.

Fig. 4. Clusters of different pooling methods: (a) Clusters obtained by spectral k-means clustering. (b) Fixed clusters computed from a cortical parcel
atlas. (c) Clusters learned by our learnable pooling method. Colors on the brain surface represent different regions.

TABLE 3
Subject-Sex Classification Performance of Our Pooling
Approach on Different Sub-Graphs:Mean Classification
Accuracy (%) With Standard Deviation Over Test Set

From the Mindboggle Dataset

Num. of
nodes

Testing on Sub-sampled
graphs

Testing on Full
graphs

100 55.02 � 13.18 52.63 � –
1k 55.98 � 4.25 52.63 � –
5k 64.11 � 1.58 47.36 � –
10k 67.94 � 5.98 52.63 � –
25k 71.77 � 4.86 73.68 � –
50k 84.21 � 3.72 78.94 � –
75k 85.26 � 3.93 84.21 � –

Full graph 94.73 � – 94.73 � –
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cortex and around regions of the basal ganglia. Interest-
ingly, several of the learned clusters focus on sub-cortical
regions like the hippocampus (first row) and amygdala (last
row), which have been linked to sex-related differences in
the literature [44]. This illustrates the benefit of learning
task-specific clusters in a supervised manner. Additionally,
we see that predicted feature maps and clusters in both sub-
jects are similar, demonstrating that the model can adapt to
the specific brain geometry of individual subjects.

We further evaluate the relevance of learned clusters by
training the same model to predict the size of 32 anatomical
parcels of each brain surface, using labeled data from Mind-
boggle. For this experiment, we hypothesize that the net-
work should learn clusters that are related to the predefined
parcels. To do so, we modify the last layer of the architecture

in Fig. 2 to have 32 outputs, one for the size of each parcel,
and change the loss function to mean square error. Adjusted
mutual information (AMI) is used to measure the similarity
between learned clusters and ground-truth parcels. AMI val-
ues range from 0 to 1, a score of 0 corresponding to random
clusters and a score of 1 for clusters identical to ground-truth.

Fig. 7 gives the mean AMI obtained at each training
epoch, and examples of predicted clusters at four different
epochs are shown in Fig. 6. In the initial stages of training,
themodel predicts a small number of clusters corresponding
mainly to the components of the spectral embedding (see the
network input in Fig. 2). In the first 500 epochs, theAMI score
between predicted clusters and ground-truth parcels drops.
Then, as training progresses, we observe increasing AMI val-
ues and progressively more defined clusters. At the end of

Fig. 5. Feature maps and predicted clusters for the task of subject-sex classification: The first column shows examples of activation maps computed
by the embedding path of our network for a female subject. The second column gives the average activation in each predicted cluster for the same
subject and feature maps. Coloring indicates output of the ReLU activation with minimum value indicated by blue and maximum value indicated by
red. Third and fourth columns depict the same information for a male subject.

Fig. 6. Pooling regions learned during training: The pooling regions are learned for the model training to regress the size of cortical regions. During ini-
tial epochs, random regions are clustered together to aggregate feature maps. A low AMI score indicates this random clustering compared to the
ground-truth. After training, the model finally learns to group multiple parcels (cyan) into on cluster pooling region. AMI score increases over epochs,
indicating task-dependent learning by our model. The last figure shows manual parcels with AMI score of 1 for reference.
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training (2500 epochs), the model achieves an AMI score of
0.39. Obtained clusters appear to be a combination of differ-
ent ground-truth parcels, suggesting that fully-connected
layers further help regressing parcel sizes.

3.6 Disease Classification

In the following experiment, we evaluate our method on the
task of classifying subjects from the ADNI dataset as normal
control (NC), mild cognitive impairment (MCI) or
Alzheimer’s disease (AD). Specifically, we consider three
different binary classification problems: NC vs AD, MCI vs
AD and NC vs MCI. We compare our method against the
random forest approach in [45], which also considers sur-
face-based information from the ADNI dataset. To measure
the contribution of the spectral embedding in our method,
we also evaluate our model trained with only cortical thick-
ness and sulcal depth as input. The same random split of
70-10-20 is employed for all three models.

The classification performance of tested models is
reported in Table 4. We see that our method outperforms
the random forest approach of [45] on all three classification
problems. Relative to this approach, the proposed method
yields mean accuracy improvements between 7.79 percent
and 11.92 percent. A significant gain in performance is also
observed when comparing the same method trained with-
out spectral node coordinates. This is particularly notable

for NC vs MCI, where adding spectral coordinates increases
the mean accuracy by 13.33 percent. Note that we have also
tried giving the network original ðx; y; zÞ coordinates of
mesh nodes. However, this led to worse results. This illus-
trates the advantage of using intrinsic node localization
when processing surface data.

3.7 Brain Age Prediction

The last experiment demonstrates our method in a regression
problem where the age of NC subjects of the ADNI dataset is
predicted using pointwise surface-based measurements. In
this case, the network outputs a single value, andMSE is used
as loss function. Once more, we test our method trained with
or without spectral node coordinates as input. Moreover, to
evaluate brain age prediction as a potential imaging bio-
marker for Alzheimer’s, we also measure the prediction accu-
racy of ourmodel onAD test subjects.

The results of this experiment are summarized in
Fig. 8, which gives the distribution of mean absolute error
(MAE) and prediction bias (predicted age minus real age)
for NC subjects and AD subjects. When testing on NC
subjects, our method achieves an MAE of 4.35 � 3.19
years, which is comparable with results in the literature.
As expected, a higher MAE of 6.80 � 6 years is obtained
for AD subjects, since the symptoms of early Alzheimer’s
are similar to premature brain aging. The brain age, calcu-
lated as the predicted age minus the real age, shows a sta-
tistically significant difference with a p-value of 0.0032.
This value suggests the potential application of brain age
prediction as a biomarker for AD.

Fig. 7. Evolution of AMI score: The adjusted mutual information score
between the pooling regions and the manual parcels over multiple
epochs is shown. A random overlap between learned pooling regions
and parcels is observed at initial epochs. After training, the AMI score
increases with the pooling regions corresponding to ground-truth
parcels.

TABLE 4
Evaluation of the Proposed Work: Average Accuracy of Disease

Classification (%), With Standard Deviation
Over the Complete ADNI Dataset

Input NC vs AD MCI vs AD NC vs MCI

RF [45] 80 � 5 65 � 6 63 � 4
Ours w/o eU 76.00 � 6.06 74.03 � 8.63 63.71 � 5.72
Ours with eU 89.33 � 4.30 76.92 � 4.78 70.79 � 6.40

First row is a random forest (RF) with multiple cortical-based features [45].
Second row is our graph convolution model without geometrical information
(spectral node coordinates eU). Last row is with this information.

Fig. 8. Distribution of absolute prediction error (left) and predicted minus real age (right), for NC and AD test subjects. Our learnable pooling strategy
yielded graph models that could correctly capture age discrepancies between real and geometry-based ages, as expected between subjects with
NC and AD.
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4 CONCLUSION

Wepresented a novel strategy that enables pooling operations
on arbitrary graph structures. The performance of our learn-
able pooling schemewas evaluated in seven experiments.

The first series of experiments evaluated the impact of
hyper-parameters: the type of pseudo-coordinates of nodes
in graph convolution kernels, showing improvement when
employing our spectral-based coordinates instead of Carte-
sian or polar-based ones; the number of clusters in pooling
operations, with a regular increase of performance up to 16
clusters; the number of eigenvectors, suggesting that a mini-
mal number of three Laplacian eigenvectors is necessary for
optimal accuracy; the number of neighbors, revealing a
compromise between accuracy and computation time; the
type of graph convolution kernel, showing an improvement
of accuracy when using B-spline convolution kernels in our
default architecture instead of Gaussian kernels.

A second experiment provided an ablation study validat-
ing the positive effects of spectral alignment and Laplacian
regularization in our method. Results showed a significant
performance gain when using both techniques, compared
to employing only one of them.

A third experiment compared different pooling techniques
for graph convolutional networks on the subject-sex classifica-
tion task. A simple global average pooling failed to capture
geometric information from consecutive layers, yielding a low
performance of 60 percent. In comparison to employing fixed
pooling regions, learning these regions with unsupervised
clustering, or applying the top-k pooling strategy to select
nodes from a learned projection vector, our learnable pooling
strategy offers significantly higher accuracy.

A fourth experiment evaluated the effect of the graph size
on the performance of subject-sex classification. The results
showed that small graphs lack information to capture the com-
plete geometry of surfaces. However, reducing the size of the
graph by 25 percent up to 75K still yields a high accuracy,
while improvingmemory and computational requirements.

The fifth experiment explored the relationship between
learned features and anatomy. The visualization of activa-
tion maps and clusters in the network revealed diversity in
terms of brain regions. Several learned clusters highlighted
essential regions of the basal ganglia, such as the hippocam-
pus and amygdala, which are associated with sex-related
differences in the literature. We further evaluated this result
with an experiment to regress the size of cortical parcels. As
expected, the trained model learns pooling regions similar
to the manually-annotated parcels.

The sixth experiment focused on predicted stages of
Alzheimer’s disease from surface data, including cortical
thickness and sulcal depth.Our results showed that pointwise
surface values could be efficiently aggregated into a fixed
number of class probabilities using the proposed network
architecture. Compared to another approach exploiting sur-
face-based features [45], our method achieved significant
improvements ranging from 7 to 11 percent. This perfor-
mance gain is mainly due to including spectral coordinates of
graph nodes as input to the network, demonstrating the
importance of intrinsic node localization.

In a final experiment, the age of ADNI subjects was pre-
dicted using pointwise surface data. Results showed that

our method provides an accuracy comparable to previous
approaches in the literature, while using only surface-based
information. As expected, subjects with Alzheimer’s have
higher discrepancies than subjects with normal cognition
(Fig. 8). The potential of the proposed method as an imaging
biomarker for AD could be evaluated in a future study.

To summarize, the proposed pooling strategy enables the
exploration of a new family of architectures for graph con-
volutional networks. Our method exploits the spectral
embeddings of graph nodes in order to learn spatially-
representative pooling patterns across different layers.
However, this requires having datasets of comparable brain
geometry, since the eigen-decomposition of the graph Lap-
lacian matrix assumes that shapes are topologically equiva-
lent. Differences in the meshing procedure as well as the
presence of holes or cuts in the mesh, for instance caused by
ablated tumors, might therefore impact the performance of
our method. In future work, we plan to investigate domain
adaptation techniques, for example based on adversarial
learning, to learn an internal representation which is robust
to such differences. Moreover, by incorporating unpooling
operations in the proposed model, we could also explore
applications requiring node-level outputs like regressing
cortical thickness over time.
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